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SUMMARY

In this paper, experiments with the same number of treatments, blocks and plots
are considered. It is assumed that the response to a treatment is affected by other
treatments, and so the model of the experiment is an interference model with
neighbor effects. The aim of this paper is to identify the structure of the left-
neighbor matrix of E-optimal design and to give the method of construction of
such design.
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1. Introduction

In the theory of experimental designs, optimality of designs is often considered. It
is known, for example, that balanced incomplete block designs (BIBD) are
universally optimal under the model with block effects as the only nuisance
parameters. However, in some experiments interplot interference may occur, and then
the optimality of designs under an interference model is studied. Recently, some
results on optimality of binary designs under an interference model with neighbor
effects have been published. These results concern mainly binary designs, such as
circular neighbor balanced designs and orthogonal arrays of type I. It was shown that
circular neighbor balanced designs are universally optimal for estimating treatment
effects under a fixed interference model (Druilhet, 1999), under a mixed interference
model (Filipiak and Markiewicz, 2003), and under the fixed interference model with
correlated observations (Filipiak and Markiewicz, 2005). Bailey and Druilhet (2004)
showed optimality of these designs under a fixed interference model for estimating of
the sum of treatment and neighbor effects. Universal optimality of orthogonal arrays
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of type I under a general interference model with correlated observations is shown in
Filipiak and Markiewicz (2004).

It is known, however, that circular neighbor balanced designs and orthogonal
arrays cannot exist for each combination of design parameters. In such a situation,
only the optimality with respect to the specified optimality criteria can be studied. The
aim of this paper is to determine E-optimal design under an interference model, i.e.
such design that the maximal variance among all best linear unbiased estimators of
normalized linear contrasts is minimal under this design; cf. Constantine, 1981.

In this paper, E-optimality of binary block designs under an interference model with
left-neighbor effects is studied. As an example we consider binary block designs with
the same number of treatments ¢ and plots k (t=k), i.e. complete block designs.
Such designs are often used in practice. For example, in UPOV research (the
International Union for the Protection of New Varieties of Plants research), complete
block designs are used in experiments in which the number of treatments is less
than 16 . Moreover, we assume that in complete block designs the number of blocks,
b, is the same as the number of treatments and plots (i.e. ¢ = b = k ), because for such
design parameters circular neighbor balanced designs, which are universally optimal
under the interference model, cannot exist. Such experiments can be applied in
clinical trials.

This paper is organized as follows. We start by presenting an interference model with
neighbor effects. In Section 3 we give the form and properties of the information
matrix of the design, which will be used in determining E-optimal design. In
Section 4 we give conditions for the structures of the left-neighbor matrices of E-
optimal complete block designs for a class of designs with r=b=4%. For 3<7<10
we present the method of construction of E-optimal designs and examples of such
designs for specified .

2. Interference model

Let I, denote an nxn identity matrix, 1, denote an n -dimensional column vector of
ones, 0. denote an »-dimensional column vector of zeros, and the symbol ® denote
the Kronecker product.

Consider a set of block designs D, with ¢ treatments arranged on bk plots, which
are grouped in b blocks. An interference model associated with the design d € D1
can be written as

Y=Ta+L,A+Bf+e¢, €))]

where 7, A and B are the vectors of treatment effects, left-neighbor effects and
block effects, respectively. Here ¢ is a vector of random errors, &~ N(0,0°1x),
where o’ is a positive unknown constant. The assumption that each block of the



E-optimal designs under an interference model 135

design has the same number of plots implies B=1, ®1, .
Let Ta be the design matrix of treatment effects in block u, 1<u <b. Further,

define Ta=(T,,:...T,) as the design matrix of treatment effects. For each u we
define L4 = HiTa , where Hy is an kxk matrix of the form
0, 1
Hi =( ! ) ()
Lict Qe

Then, La={,®H.)T. is the design matrix of left-neighbor effects. Model (1) with
H. and L. defined above, is called a circular interference model with left-neighbor
effects.

The matrices T+ and L. depend on the arrangement of treatments on plots, i.e.
they change with the design, while the matrix B is the same for each design
d € D1 . Thus, the matrices T, and Ls are indexed by d .

We will consider designs in which each treatment has a left neighbor. This
situation may occur if each block of a design has the form of a circle. If plots in
blocks are arranged in linear forms, we can obtain the effect of circularity by adding
border plots at the beginning of each block, where the treatment at the border plot is
the same as the treatment at the opposite end of the block. For example, the design
with border plots, with 4 treatments, arranged on 6 plots in 2 blocks, has the form:

411 2 4
213 3 2

Border plots are not used for measuring the response variables.

3. Information matrix

Let Cs denote the information matrix of design d for estimating 7 in the linear
model under normality. Following Markiewicz (1997), the information matrix Cg
can be expressed as a function of the information matrix for the simultaneous
estimation of 7 and A, of the form

W, =(Ts:La)'Qs(Ts:La)
where Q;=1x~B(B'B)"B is the orthogonal projector onto the orthocomplement of

the column span of B, where (B'B)” denotes a generalized inverse of B'B. For
B=1,®1; we obtain Q; =1, ®E,, where Ex =i —k 'Lil¢.
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The properties of the information matrix C. as a function of W, are presented in
Pukelsheim (1993) and Markiewicz (1997). In particular, the information matrix C,
can be expressed as the Schur complement of the matrix L,Q;L. in Wa,i.e.

Cd = [Wd/L'dQBLd] = T:;QBTd "T:]QBLJ(L‘dQBLd)_ L'dQETd' (3)

Observe that the matrix Q; has row and column sums zero. Since vectors Tal,
and Lgl, are in the column-space of B, each block of the matrix W, has zero row
and column sums. Moreover, observe that H, defined in (2) is a permutation matrix.
It implies that HiE:H, = H, E:H, = E« . Hence, the block matrices of W. are of the
form:

\J 1] l b \J Al
T,QsTa= Tde—;z T, 1,1 Tau
u=1

' ' 1 2 J 1 [ {
T,QsLs= Tde—;Z T,1lLa and L QzLs=TQ,Ts.

u=1

In this paper we consider complete binary designs with the same number of blocks
as plots and treatments, i.e. binary designs with 7 =b =k . We will denote the set of
such designs by .. For each block of design de®D: we have T,1L =L, =1.
Hence

T,QsTa=?1,-11,=tE, and  T,QzL.s=T,Ls~1l,
We will denote the matrix T.Q;Ls by K.

Observing, that E, is an idempotent matrix, i.e. E.E;=E., and according to (3),
we get

1 1
C.=tE, —;Kde. )

Denote elements of the matrix T,Ls by /,, 1<i,j<¢. Since each I, is the
number of occurrences of treatment i with treatment j as left neighbor, it has a
value from the set {0,1,...,#}, with /,, =0 for binary designs. This implies that for a
design d € D., the matrix K, belongs to the class K defined as follows:

Ko={Ks=(k;)€ 2" : Kal: =K1,=0, k; € {-1,0,1,....t -1},

k,=-11<i,j<t},

where 2™ is the set of all #x¢ integer matrices.
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The matrix T,Ls is called a lefi-neighbor matrix of design d and can be ’
presented as

T,Ls=Ks+11, (5)

4. E-optimal designs

In this section we give the structure of the left-neighbor matrix of design d" € D,
which is E-optimal over the class D., > 2. We give the methods of construction of
the E-optimal designs over D., for 3<¢<10. Since the information matrix and the
left-neighbor matrix of design d can be expressed as a function of the matrix K,
(see (4) and (5)), which has row and column sums zero, the results will be given in
terms of K.

For a design d € Dipx let 0= 1 (Cs) < 4 (Ca) £...< 1,_,(C4) be the eigenvalues of
its information matrix Cs. A design d eD.sx is called E-optimal, if
#(Cr)2 p(C,) forall designs d € D.p, (Constantine, 1981).

Observe that for design d € D, , the matrices E, and KK, in (4) commute. Thus
we are interested in determining the structure of the matrix Ku, for which the largest
eigenvalue of KK, is minimal over all matrices from K, i.e. such structure of the
matrix K. that

4 (KaK )= {giwr} 4 (KK

Let H, denote a matrix permutationally similar to H,, i.e. H,=PH,P' for an
arbitrary matrix P e®,, where @, is the set of nxn permutation matrices. The proof

of the following theorem, which is a basis for construction of E-optimal designs, can
be found in Filipiak et al. (2005).

Theorem 1. Let design d° be an E-optimal design in the class D: . Then

(i) fort=2357: Ko =H.-1;
(ii) for r=4: Ko+ =([1,®H2)~Ls;
(iii) for te N, r>8 there exist i, j e N\w{0} suchthat r=3i+5; and
1, ®(H;~13) if 1=3m,
Kr =19, ~ ~ . meN.
diag(I, ® (H3—I:),1,®(Hs~15)), if 7#3m,

From this theorem it follows that the left-neighbor matrix of an E-optimal design
has zero diagonal, exactly one off-diagonal element equal to 2 in each row and
column, and the remaining off-diagonal elements are equal to 1. This implies that an



138 K. Filipiak, R. Rézanski

E-optimal design must have two class of ordered pairs of neighboring treatments:
t(t—2) pairs which occur exactly once in a design and ¢ ordered pairs which occur
exactly twice in a design. The main problem in the construction of E-optimal designs
is which pairs occur once and which twice.

From the form of the matrix T, we can observe that each block of complete
binary design is represented by a one-cycle permutation matrix. Thus, if we
decompose the left-neighbor matrix to the sum of ¢ one-cycle permutation matrices,
we obtain a design. Recall that each permutation is a cycle or a product of disjoint
cycles (see e.g. Birkhoff and Mac Lane, 1954). For example, the matrix H; is a one-
cycle permutation matrix, which presents the cycle: 12,2 —>3,3—1 (indexes of
elements equal to 1). Observe that, if we write this cycle in the form [123], we can
regard it as a treatment sequence in a simple block of design. Thus, if we express the
left-neighbor matrix of design d as the sum of ¢ one-cycle permutation matrices, we
obtain the treatment sequences of each block of design d .

From Theorem 1 it follows that for different + we have different forms of the
matrix K. . In consequence, to construct E-optimal designs we must use different
methods for different values of ¢. Thus we give some hints on how to decompose
left-neighbor matrices of E-optimal designs over 9, in accordance with the results of
Theorem 1.

Case 1. Let +=3,5 or 7. By Theorem 1 (i) and according to (5), the left-neighbor
matrix of E-optimal design 4" is permutationally similar to the matrix H.—L +11,.
This matrix can be written as the sum of ¢ matrices, which are jth powers of H,,
J #t . Then we have the following examples of E-optimal designs:

fort=3: forz=>5:
211 5 4 3 2
2|11 3 2 511 2 3 4 5
d =31 2 3], d=[4|1 3 5 2 4
211 3 2 311 4 2 5 3
211 5 4 3 2
and for +=7:
211 7 6 5 4 3 2
311 6 4 2 7 5 3
411 5 2 6 3 7 4
d=|5]147 3 6 2 5]
611 3 5 7 2 46
711 2 3 4 5 6 7
2117 6 5 4 32




E-optimal designs under an interference model 139

Observe that, if we delete the last block from each of these designs, we obtain
circular neighbor balanced designs (see e.g. Druilhet, 1999) which are universally
optimal over the class D:sx (if they exist). Filipiak and Rézanski (2004) showed that
circular neighbor balanced designs with one block repeated, i.e. designs d°, are
highly efficient over o, .

Case 2. Let t =4. By Theorem 1 (ii) and according to (5), the left-neighbor matrix
of E-optimal design d” is permutationally similar to the matrix (I,® H2) -1+ 1.l;.
Thus an example of an E-optimal design over D, is

N W RN
— e b
W NN A
H AW W
N W RN

Observe that the number of one-cycle permutation matrices increases rapidly
with ¢. To reduce the number of possible decompositions, we can consider block
forms of permutation matrices, which follows from the block-diagonal forms of the
matrix K- in Theorem 1 (iii). To illustrate (iii) we give examples of the construction
of the E-optimal designs for r=6, t=9,and 1=8, r=10.

Before we present the basis of the method of construction of the E-optimal design
for mentioned ¢, we introduce the following notation: ®,.. denotes the nxm matrix
of zeros, A,=(5;) is the nxn matrix with §; =1 if j=n+1-i and zero otherwise,
1<i,j<n,and the nxn matrix of zeros we denote in short by ©, .

Case 3. Let t=3m, me {2,3}. The left-neighbor matrix of the E-optimal design is
given by (5) and Theorem 1 (iii).

a) Let r=6. We obtain the E-optimal design over Ds if we decompose the left-

neighbor matrix to the sum of three matrices permutationally similar to Us and three
matrices permutationally similar to Vs, where

N
e Q ®; Q'

(R @3][@«2 14 ] R @,
V6 = '
@ S A2 Ol @ S

and P,Q,R,S €P,.
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An example of E-optimal design is:

6|1 2 3 45 6
3|11 2 465 3
rol4lr 32564
311 4526 3
211 5 43 6 2
511 6 4 2 3 5)

b) Let =9 . We obtain the E-optimal design over D, if we write the left-neighbor
matrix as the sum of three matrices permutationally similar to Us,, three matrices

permutationally similar to V,, and three matrices permutationally similar to Z,,
where

D & @ D' @
Us=|0; E @, H; @ E' 0;|
® 0O F ®; 0; F

M 0, 0; M' @; ©;
O Iz \
Vo={0; N 6 L © e N' ;)
®; 0; P ? 7 @ 0; P
Q 0 6 Q 6; 6
Oz Is ,
Z,=|0; R @, I 6 ® R' @
0 0; S ? @ ®; 0; S

and D,E,F,M,N,P,Q,R,Se ?,.

Case 4. Let t>8 and ¢#3m, me N. The left-neighbor matrix of the E-optimal
design is given by (5) and Theorem 1 (iii).

a) Let +=8. We obtain the E-optimal design over D; if we decompose the left-
neighbor matrix to the sum of three matrices permutationally similar to Us, three
matrices permutationally similar to V;, and two matrices permutationally similar to

Zs , where:
Us =( D @3)(5)1_['8( D' @3:(5),
®5x3 P ®5x3 P
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v =( E @3)(5][@6)(2 Is J[ E' @3st
) Oss Q Ar O\ O@sa Q')

Z =( F ®3x5j(®5x3 Is ][ F' @m)
’ ®s5: R H: 0:s/\0s53 R’
and D,E,Fe?;, P.QReP;.

b) Let +=10. We obtain the E-optimal design over D if we write the left-
neighbor matrix as the sum of five matrices permutationally similar to Ui and five
matrices permutationally similar to Vi, where:

Uloz( S)Hlo( 5')’
e Q 05 Q
( R @5)(@&4 Is )(R' @sJ
Vio= ,
®s S )\ Hi 0Ou6/\0Os S

Observe, that the decomposition of the matrix T,L. is not unique. Moreover,
since we are considering a circular interference model, the information matrix does
not depend on the first treatment in a block. Thus the E-optimal designs given in this
paper are not determined uniquely. Nevertheless, using decomposition of the left-
neighbor matrix of the E-optimal design to the sum of permutation matrices given in
Case 1 - Case 4, we can generate all E-optimal designs over D:.

For the interference model with right-neighbor effects, the results given in this
paper still hold. This implies that the designs given in this paper are E-optimal under
the interference model with left-neighbor :ffects as well as under the interference
model with right-neighbor effects.

and P,Q,R,Se?;.
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